If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6j^2-5j=0
a = 6; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·6·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*6}=\frac{0}{12} =0 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*6}=\frac{10}{12} =5/6 $
| 50=t+14 | | 1/5y=3 | | c=0.75+2.25+11.25 | | 5z−2z=12 | | 8x-1-5-7=-2x+4-x | | -2(4s-1)-2=-2(6s+7)-2 | | -0.5x+8.64=-0.7x+4.84 | | 3x=1,000 | | 7d−6d=14 | | 736=2(w−430) | | 12-(x+3)=37 | | 6-8n+4n=19-97 | | -2(4s-6)-12=-3(7s+6)-3 | | 45x-3x=9x | | 15+36=x | | f(3)=5-3(3)^2 | | -(6y+4)-(-5y-6)=-6 | | 4*4x=128 | | 5^5x=125 | | 168n=180n-360 | | 7m-8=-m | | (8x+120)+7=180 | | 4x4X=128 | | 36(t-25)=1620 | | 075a=14.25 | | 4t^2-24t+11=0 | | 9x-1+5x=7x+3-9x | | 4x4H=128 | | 2/3p=30 | | -(3y+2)-(2y-8)=0 | | 0.5x+0.75x=x | | -2(n-7)=-4n+2 |